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Abstract—An isothermal, fully three-dimensional material damping modelling technique, to some
extent alternative to classic viscoelasticity, is proposed. The method is formulated in the frequency
domain as an augmented Hooke's law (AHL) with a constitutive matrix in which material damping
is introduced by adding frequency dependent, complex valued terms to the classical material modulus
matrix of Hooke’s generalized law. The derivations are based on linear. irreversible thermodynamics
and the concept of hidden coordinates as introduced by Biot [(1955) Phys. Rev. 97, 1463-1469].
The one-dimensional concept of multiple augmenting thermodynamic fields by Lesieutre [(1992)
Int. J. Solids Structures 29, 1567-1579] is generalized to a suitable three-dimensional continuum
form through the introduction of a special type of hidden coordinate vectors with linear, first order.
time domain relaxation equations. Consistent with the hidden coordinates, a free energy density
function, assuming isothermal conditions, is introduced as the time domain basis of the augmented
Hooke's law. Through a time-domain model of the coupled evolution of the mechanical dis-
placements and the thermodynamical variables. issues of causality are avoided completely in the
final frequency domain formulation. The general time-domain model used is shown to be equivalent
to a three-dimensional. multiple anelastic displacement field model. An isotropic augmented Hooke's
law with both dilatational and shearing damping has been implemented and tested using a 20-node
volume element in the finite element code ASKA Acoustics. A close agreement between finite
element calculations and the corresponding analytically exact results for the studied rod and beam
cases is obtained.

NOMENCLATURE
AHL augmented Hooke's law
aly affinity, thermodynamic “force™ conjugate to thermodynamic variable ¢,
A six-dimensional affinity vector conjugate to thermodynamic variable vector £/

Ciim elastic moduli in Hooke’s generalized law
spatial, first order, partial differential operator matrix (6 x 3 operator matrix)

D' spatial, first order. partial differential operator: the 3 x 6 matrix transpose of D
E six-dimensional infinitesimal (engineering) strain vector. £ = D[]

E’ six-dimensional thermodynamic variable vector (hidden coordinate vector)

F, coupling 6 x 6-matrix, between £ and £', in augmented free energy density

G, positive 6 x 6-matrix in augmented free energy density and entropy production
G elastic shear modulus, Lamé’s shear constant (Pa)

H real, symmetric material modulus 6 x 6-matrix in Hooke's generalized law (Pa)
H; real, symmetric 6 x 6-matrix in isotropic Hooke's generalized law

H, real, diagonal 6 x 6-matrix in isotropic Hooke's generalized law

H complex, symmetric material modulus 6 x 6-matrix in augmented Hooke's law

! time interval (0, T') with length 7's

K real, symmetric (unrelaxed) high-frequency material modulus matrix (6 x 6)

! indexing number for thermodynamic processes, variable vectors and parameters
N, total number of anelastic, thermodynamic processes (damping processes)

s complex frequency (Laplace variable) with imaginary part o (frequency in rad s ')
t time variable

u three-dimensional displacement field with Cartesian components u, = u,(X. 7)

X point in three-dimensional space with rectangular Cartesian coordinates x;.v..x;
A0 “dissipation’ parameter in isotropic AHL (Pa)

BB AHL frequency parameter. inverse of relaxation time (rads ')

¥ local specific entropy production at x per unit time [N m(kg 's 'K )]

b mean entropy production at x per unit mass and unit time during time interval /
£ infinitesimal, symmetric, Cartesian, strain tensor components

eh hidden coordinate (or anelastic “*strain™) in thermodynamic process number /

0 temperature field in three-dimensional continuum ( K)

7 Lamé’s constant (Pa)

IRy coupling parameter in isotropic AHL (Pa)
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P mass density field
c six-dimensional stress vector corresponding to the engineering strain vector £
Ty symmetric, Cartesian, stress tensor components (Pa)

@.p, coupling parameter in isotropic AHL (Pa)
specific free energy (N m kg™')

¥ free energy density function (N m m™%)
2] circular frequency corresponding to frequency /= ®;/2n in Hz
v the three-dimensional, spatial gradient operator

the partial time derivative Jdu/ét of u
the Laplace transform of v = u(x, t) with respect to the time variable

= =

1. INTRODUCTION

It is a well known fact that vibration damping caused by dissipation of mechanical energy
occurs in all real structures and materials as they vibrate and deform due to external forces
and impinging sound waves. Commonly used design materials such as metals and composite
materials often, though, have very small damping capacity. In many cases, for example in
connection to air, space and surface transportation, this is a problem because effective
vibration damping and low sound levels are highly desired design goals.

In built-up structures, such as aircraft, ship and submarine hulls and car bodies, joints
and interfaces between structural parts are usually the dominating sources of damping.
Even though material damping, i.e. loss of vibration energy due to internal processes inside
structural parts, seldom dominates the total system damping there is a real need for accurate
material damping modelling techniques. Material damping models, including the spatial
distribution and frequency dependence of the damping, are needed as important parts in
computation and prediction of, for example, aircraft interior noise caused by acoustic
propeller excitation. Yet another example of the same kind is prediction of external noise
in the water outside a submarine hull caused by inboard machinery. Generally, material
damping cannot be neglected in engineering applications when sound transmission and
vibration levels should be predicted or analysed with high accuracy.

There exists a vast amount of literature and results on damping [see for example
Ruzicka (1960), Bert (1973), Nashif er al. (1985), Kinra and Wolfenden (1992) and ref-
erences therein] but until recently there have been few methods available that effectively,
and in a straightforward manner, account for the frequency dependence and the spatial
distribution of material damping in real structures.

A very promising method for dealing with the frequency dependence of material
damping was proposed by Lesieutre (1989). His method, which is based on so-called
augmenting thermodynamic fields, has since then been discussed by Lesieutre and Mingori
(1990) and improved by Lesieutre (1992) and Lesieutre and Bianchini (1993). Lesieutre
(1989-1992) and Lesieutre and Mingori (1990) treat one-dimensional cases only, while a
three-dimensional formulation based on anelastic displacement fields is presented in Les-
ieutre and Bianchini (1993). In several aspects Lesieutre’s method is new, at least in the
field of structural dynamics and vibroacoustics.

In addition to Lesieutre’s work, considerable progress in modelling viscoelastic
material behavior has been reported, as presented, in the works by Bagley and Torvik
(1983) on fractional derivative models, Golla and Hughes (1985) and McTavish and Hughes
(1993) on mini-oscillator models and by Yiu (1993) on generalized Maxwell models. The
mini-oscillator model, the generalized Maxwell model as well as Lesieutre’s model are all
based on the concept of internal dissipation coordinates. They all result in expanded and
larger time domain finite element mass, stiffness and damping matrices and more degrees
of freedom when compared to corresponding elastic finite element models. Both fractional
derivative models and mini-oscillator models are reported to fit experimental data over
broad ranges of frequency (Bagley and Torvik 1983 ; McTavish and Hughes, (1993).

Differences and similarities between the augmented Hooke’s law (AHL) approach,
which is proposed here, and anelastic displacement models, fractional derivative models
and mini-oscillator models for damping simulation will be addressed by the author in a
forthcoming paper. The AHL method and classical viscoelasticity and similarities with
Yiu’s work on viscoelastic structures, (Yiu, 1993), will also be discussed in a separate paper.



Augmented Hooke's law 2837

In the present paper, a fully three-dimensional material damping modelling technique
is proposed. The method is formulated in the frequency domain as an augmented Hooke’s
law, in which material damping is introduced by adding frequency dependent, complex
anelastic terms to the material modulus matrix of Hooke’s generalized law.

Important advantages of the AHL formulation are that:

it can be directly implemented, as a complex valued constitutive matrix, in any finite
element code incorporating complex node variables, complex element (material)
properties and a complex equation solver,

spatial (i.e. element) and frequency dependent damping, can be introduced in finite
element models in a natural way without need for extra degrees of causality freedom,
problems, in the damping description, are avoided completely because the basic
assumptions are formulated in the time domain, even though the resulting AHL
formulation is a frequency domain method.

The derivations leading to the augmented Hooke’s law are inspired by Lesieutre’s
results, (Lesieutre, 1989, 1992a, 1992b), and his basic assumptions concerning augmenting
thermodynamic fields and their corresponding first order, linear equations of evolution
(Section 3). It should be noted that the augmenting thermodynamic fields are analogous to
hidden coordinates of the same kind as those introduced by Biot (1954, 1955, 1956, 1958,
1959) in his linear theory of irreversible thermodynamics. It should also be noted that there
exists a formal resemblance between the augmented Hooke’s law and Biot’s operational
equation results (Biot, 1955). The concept of hidden coordinates, also called internal
variables in the literature, and Biot’s linear theory of irreversible thermodynamics is taken
here as the theoretical basis of the AHL formulation and the linear augmented Hooke’s
law.

The originality of the present paper is:

(a) generalization of Lesieutre’s basic one-dimensional assumptions to a suitable three-
dimensional form by introduction of a special type of anelastic strains as hidden
coordinates (Section 3.1),

(b) formulation of a new free energy density function for isothermal conditions (Section
3.2),

(¢) derivation of the resulting augmented Hooke’s law, AHL, based on (a) and (b)
above (Section 4) and

(d) derivation of the entropy production associated with the augmented Hooke’s law,
based on (a)—(c) above and the Clausius~Duhem inequality (Section 5).

The isotropic AHL formulation, presented in Section 6, has been implemented (Section
7.1) in the finite element code ASKA Acoustics (Géransson, 1988), as a complex, frequency
dependent, fully three-dimensional, symmetric and isotropic element. Numerical tests and
comparisons to one-dimensional analytical solutions have been done with quite satisfactory
results (Sections 7.2 and 7.3).

2. THE ELASTIC. GENERALIZED HOOKE'S LAW

Throughout the discussions to follow a three-dimensional continuum with dis-
placements u; and stresses o, is considered. When the body forces vanish the equations of
motion of the continuum, expressed in rectangular Cartesian coordinates x,, x,, x; are
(Fung, 1965):

ia;
— =0 i=1.203. 1)
Xy

For a linear, purely elastic material the stresses under isothermal conditions are :
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Oy = Cipuims 2

where C,,, are elastic constants or moduli which generally are functions of the spatial
coordinates. The functions ¢, are the Cartesian components of the infinitesimal strain
tensor and the summation convention is implied in both eqns (1) and (2).

Equations (2) constitute Hooke's generalized law which conveniently is expressed in
standard engineering matrix notation as:

o = HE, )
where E is the six-dimensional infinitesimal (engineering) strain vector :
E = D[u]. 4

The vector ¢ is the corresponding six-dimensional stress vector while H is the real,
symmetric, positive material modulus matrix. Details about the 6 x 6 matrix H may be
found in, for example, Reddy (1986). Cartesian stress and strain tensor components and
matrix notation as above will be used throughout the paper. The (matrix) column vector
fields o, E and u and the first order spatial, partial differential (matrix) operator D are
defined in the Appendix.

Using internal, thermodynamic variables and a new free energy density as a basis it
will be shown in the following that material damping, including the spatial as well as the
frequency dependence, can be accounted for in the frequency domain by adding complex
valued, frequency dependent, symmetric terms to the real, symmetric and frequency inde-
pendent Hooke’s law matrix H.

3. ANELASTICITY ASSUMPTIONS

3.1. Internal variables
The basic assumption made by Lesieutre for an “augmenting thermodynamic field”,
£, 1s the scalar equation of evolution or the relaxation equation:

&= —B&—<o). %)

where &, is the strain dependent thermodynamic equilibrium value of ¢ and f is a positive
material constant defined as the inverse of a finite relaxation time constant. The fundamental
idea behind the thermodynamic variable ¢ is that its interaction with the mechanical
displacements in the continuum is associated with entropy production and, thus, with
material damping. The physical relevance behind these ideas will not be discussed in the
present paper but they will be used as a starting point for the AHL formulation. For a
detailed discussion of thermodynamic variables, hidden coordinates and relaxation equa-
tions see Biot (1954, 1955, 1936, 1938), de Groot and Mazur (1962), Fung (1965) and
Nowick and Berry (1972).

Assuming that there are N, different augmenting thermodynamic fields, &', representing
separate damping “‘mechanisms”. the corresponding evolution equations suggested by eqn
(5) will be defined by the equations:

élz_ﬁ/(il,_éf)) 121,2,3,...,1\73; ﬁl>0 (6)

which correspond to a special case of Biot’s “basic relations for irreversible processes”
(Biot, 1955). Uncoupled relaxation equations of this kind are used by Lesieutre (1992) in
his one-dimensional theory of multiple augmenting fields.

Here a slightly different approach is used which is crucial for applications to a three-
dimensional continuum. The crucial step is the introduction of a number of six-dimensional
vector fields £ with components defined by symmetric tensor components & as:
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[\

E'=[g\, & ey g, 2ehy 26417 1=1,2,3,... N, @]
Through a formal reformulation of eqn (6), based on the assumption that the thermo-
dynamic variables &' are two times continuously differentiable with respect to the spatial
coordinates and that the vectors E are identified with the fields D[V¢’], the thermodynamic
vector fields £ may be assumed to have the first order linear evolution equations:

E/_’_ﬁ/E/:ﬁ/ES 1:1*2135""]\["1: (8)

where the parameters f3; are positive. The thermodynamical equilibrium values E} in eqn
(8) will later be shown to be linear functions of the current mechanical strain represented
by the vector field £. From now on the vector fields E’, interchangeably with the cor-
responding tensor components ¢, will be denoted anelastic strains and used as hidden
coordinate vectors with matrix evolution equations (8).

Note that the requirement of causality, in the damped, three-dimensional continuum
description is accounted for automatically, because the basic anelasticity assumptions (7)
and (8) are formulated in the time domain. This is an advantage of the AHL formulation,
shared also by Lesicutre’s one- and three-dimensional formulations, as compared to other
commonly used models (Bert, 1973) of material damping.

Stresses, affinities and thermodynamical equilibrium vector fields E} can be defined
only after a suitable free energy density function has been introduced.

3.2. Free energy assumption
Define the free energy density ¥ per unit volume at isothermal conditions as:
N, N,
Y=py=.E'KE- Y E'FE+ Y E'GE' 9)
! =1

=

Nd
K=H+ Y FG/'F, (10)

f=1

[cf. Lesieutre (1989)] where y is the specific free energy (the free energy per unit mass). The
matrices G, must be real, symmetric and positive while the matrices F, must be real and
symmetric. The required symmetry of the matrices is a consequence of the symmetry of the
current stress and strain tensors and the symmetry of the anelastic strain tensors &l,. The
positiveness, of H and the matrices G,, follows from the requirement that the free energy
must be positive in the neighbourhood of the natural state (Fung, 1965), of the continuum.
The physical dimension and units of the matrices F, and G, are the same as those of the
elastic moduli in the Hooke’s matrix H when the hidden coordinates ¢/, are assumed to be
dimensionless.

3.3. Time domain evolution equations
To proceed with the formulation of the augmented Hooke’s law, the stresses g, are
defined as:

_ ¥ 1)
O = Y (
and the six-dimensional stress vector field ¢ is correspondingly expressed as:
N,
c=KE-) FE (12)

=1

which according to eqn (10) may also be written:
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N,

o =HE+ Y FG, '[FE—GE. (13)

(=1

The affinities or *‘thermodynamic forces™ @), corresponding to the anelastic strains &) are
given by :

; o
ay = — — 14
2 el (14)
and the corresponding six-dimensional affinity vector 4’ as:
A'=F,E-GE'" (15)

The thermodynamic, anelastic equilibrium strains £}, in eqn (8) may now, according to eqn
(15), be determined as the anelastic strains corresponding to zero affinities 4', i.e. as:

Ey=E', _, =G, 'FE (16)

From a substitution of (15) into (13) and of (16) into (15) it follows that:

N

o =HE+Y FG'4' a7

1=1
A = —G[E'—E)). (18)

It is obvious from eqn (17) that the current stress vector, o, is obtained by adding anelastic
terms to the “elastic” part HE. According to eqns (17), (18) and (8) the stress becomes
elastic and obeys Hooke’s generalized law (3), when the thermodynamic forces A4’ or,
equivalently, the anelastic strain velocities £’ all vanish. Details about affinities and linear
evolution equations may be found in de Groot and Mazur (1962) and Nowick and Berry
(1972).

When the stresses (12) are substituted into the equations of motion (1) the resulting
matrix equation is (see Appendix for the definition of the first order spatial, partial differ-
ential (matrix) operators D and D7) :

N

—D"[KD[u]] + pii = — Z D'[F,E] (19)

which is a coupled partial differential equation for the three-dimensional displacement field
u = u(x, t) and the anelastic strain fields E' = E'(x, ¢).

To conclude the discussion of anelasticity, (16) may be substituted into (8) and the
final evolution equations for the anelastic strains are obtained as:

E[+BIEI :B/GFIFID[U] /= 152,3,...,Na; ﬂ/>0 (20)

which are the fundamental thermodynamic, time domain evolution equations governing
the AHL formulation and the augmented Hooke’s law.

The equations (19) and (20) together, in Cartesian matrix notation, govern the evol-
ution and motion of the studied three-dimensional continuum. The question of boundary
conditions, which the mechanical displacements u, and the stresses ¢, must satisfy, are
mentioned in Section 4.
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3.4. Comment on anelastic displacement fields
Assuming that six-dimensional vector fields £, corresponding to three-dimensional
anelastic displacement fields u, are identified as the transformed anelastic strains:

E.=D]=K"'"FE [=123,....N, (21
it follows that the AHL evolution equations (20) are equivalent to the evolution equations:
El+BE, =K 'FG'FE [=1,23,....,N;; B>0 (22)

for the transformed strains EY. It also follows that the stress vector ¢ is given by :
o = K(E—-Dlu,]) (23)

where the total anelastic displacement field u, is defined as the sum:
u, =y ul. (24)

Using the anelastic displacement fields, formally defined by eqns (21) and (24), the evolution
equations (22) and the free energy (9) as a starting point it may be possible to derive a time
domain model analogous to the three-dimensional, multiple anelastic displacement model
presented by Lesieutre and Bianchini (1993).

4. AUGMENTED HOOKE'S LAW IN FREQUENCY DOMAIN

4.1. Constitutive equations

In the following the Laplace transform of a field or function is denoted by a tilde above
the particular parameter, i.e. if p is the time domain variable then j denotes the Laplace
transform of p. By application of the Laplace transform to the equations (12) and (20)
above the augmented Hooke’s law may be derived through elimination of the transformed
anelastic strains £'.

Laplace transformation of eqns (12) and (20), assuming zero initial conditions for the
anelastic strain vectors E’, will result in the equations:

.\'\)
6=KE-Y FE' (25)
/=1

S+B)E' =BG 'FD[a], 1=1,2,3,....,N,; B, >0 (26)

where s is the complex Laplace or frequency variable with a circular frequency imaginary
part o.
Substitution of (4) in (26) and elimination of E” between (25) and (26), results in:

¢ = HE, 27
where H = H(x, 5) is the complex valued, frequency dependent constitutive 6 x 6 matrix:

. N s
H=H+)Y -FG;'F 28
/;I (S-l—[}/) IAd] i ( )

or equivalently :
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Y & i ﬁl —1
A= K_,:Z. GEB) F,G; 'F. (29)

Equations (27)-(29) with frequency dependent constitutive, complex valued material modu-
lus matrix H constitutes the augmented Hooke’s law in frequency domain for a fully three-
dimensional and anisotropic material. It is obvious, from eqn (28), that the AHL matrix at
zero frequency equals H. Thus will the augmented Hooke’s law approach the usual gen-
eralized Hooke’s law for low frequency vibrations and generally slow processes. At high
frequencies H, according to eqn (29), approaches the unrelaxed, high frequency material
modulus matrix K, as expected.

At this point it should be noted that a more complicated frequency dependence in each
added term in eqn (28) may be simulated. As an example, this may be achieved by grouping
damping mechanisms with proportional F,G; 'F,-matrices together in the sum in eqn (28),
1.e. by using contributions of the type, cf. Lesieutre (1992):

¥R

M s "
L e 0

with real coefficients a,.

It should also be noted that the derivation of the augmented Hooke’s law equally well
could have been based on anelastic displacements «/, as defined in eqns (21) and (24) above.
Thus, formally, the AHL approach is analogous to a frequency domain version of the three-
dimensional, multiple, anelastic displacement model presented by Lesieutre and Bianchini
(1993). Advantages of the AHL approach, over Lesieutre’s time domain method, are that
it does not introduce any extra degrees of freedom into the final frequency domain equations
of motion and that the corresponding finite element equations contain symmetric matrices
only. A restriction of the AHL method, though, is that it is completely linear and thus
cannot handle non-linear, temperature dependent high dissipation damping problems such
as “thermal runaway” discussed by Lesieutre and Govindswamy (1994).

4.2. Equations of motion

Assuming zero initial conditions for the displacement field u = u(x, f) and the cor-
responding velocity field & = u(x, 1} = (¢u/0r), Laplace transformation of the equations of
motion (1) yields the matrix equation:

—D"[6]+5%pi = 0. 31

When stresses, defined according to the augmented Hooke’s law (27), are introduced
into this equation the resulting frequency domain, partial differential equation for the
transformed displacement field # = d(x, s) is obtained as:

— D'[AD[a]] + 5% pii = 0. (32)

The transformed displacement field & = d(x,s) and the transformed traction field
o = 7,(x,s) also have to satisfy appropriate transformed boundary conditions (essential,
natural or mixed) on the boundary of the studied continuum. In this context it should be
noted that the anelastic (time domain) hidden coordinates introduced in Section 3 do not
appear explicitly in the augmented Hooke’s law (27)—(29), nor in the frequency domain
partial differential equation (32) or in the corresponding frequency domain boundary
conditions. As a result, eqn (32), together with its frequency domain boundary conditions,
under isothermal conditions governs the motion of a three-dimensional continuum with
AHL material properties.
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5. ENTROPY PRODUCTION

Expressions derived, which define the entropy production locally in different parts of
a vibrating structure, may be of considerable practical interest in applications when the
effect of different kinds and placements of damping treatments are studied. It should, e.g.
when computing and predicting vibrational response, be possible to identify parts where
most of the energy dissipation will take place during a specific vibrational excitation.

A suitable starting point for derivation of the (local) entropy production due to
damping is the Clausius—Duhem inequality, as presented by Truesdell and Noll (1992),
which states that the entropy production is always non-negative. Under isothermal
conditions, it follows from eqns (9), (12) and (15) that the local entropy production y per
unit mass and unit time for a material obeying the augmented Hooke’s law (27) is given
by:

1 N, .
=y Y A"E (33)
[=1

Combining (33) with (18) and the evolution equations (8) and recalling that all the 3, and
G, are positive, it is easily shown that each anelastic strain velocity vector £’ is associated
with a non-negative entropy production y,:

| U
o7 Eé' EE’ GL =20 (34)
/

per unit mass and unit time. The entropy production corresponding to the augmented
Hooke’s law thus is non-negative and in agreement with the Clausius~Duhem inequality.
For a time harmonic (sinusoidal) strain field £ = E(x,1):

E = Re[C(x) €] (35

corresponding to a steady state time harmonic vibration with angular frequency w, it may
be shown that the mean value 7, of the entropy production, at point x during a time juterval
I=(0,T) is given by:

1

PN B B /A
11(’&)—8 PH/Z

S CTF,G'F,C*. 36
(B oy (36)

The x-dependent, complex valued strain “‘amplitude” vector C = C(x), with complex con-
jugate C*, is defined by the strain vector field E as:

2 T
C=—- J e " E(x,t)dt. (37
T J

If the complex valued vector C(x) corresponds to, e.g., a computed response due to a known
time harmonic excitation of the continuum, then the spatial distribution of the mean entropy
production per unit mass and unit time may be computed according to the expression (36).
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6. ISOTROPIC AUGMENTED HOOKE'S LAW

6.1. Constitutive equation
For isotropic, elastic materials the generalized Hooke’s law matrix H may be written :

H=4iH+G Hg, (38)

where ~. and G are the usual real Lamé’s constants. The only non-zero elements of the
constant, real and symmetric matrices H, and Hg; are:

(H),):k = 1 l's k < 3 (39)
(H(;)n=2 1<i<3
(Hu)n =1 4<i<ge. (40)

An isotropic AHL material with anelastic strain vectors E’, representing physically different
“damping mechanisms”, will now be defined using the general results in Sections 3 and 4.
According to the eqns (17), (18) and (8) the time domain stress vector may be expressed
as:

.
Ya 1 A
c=HE+ Y - FE (41)
/

=1

with positive frequency parameters 8, and an isotropic AHL is obtained by assuming that
each coupling matrix F, in the sum is a linear combination of the matrices H; and Hg, (39)
and (40):

F =9 H+uH. [=123,.. N, (42)

In eqns (41) and (42) each of the parameters §,, ¢, and g, are supposed to be real material
parameters which are in general x-dependent.

The Grmatrices in the free energy density ‘P, cf. (9) and (10), also have to be defined.
A possible assumption here is to choose the G-matrices as diagonal and, e.g.,

'1/'6,'/(, 1<l.k<3

" = 43
(G/)IA {%. s 4 < l,k < 63 ( )
where each «, is posttive and J, is the Kronecker delta.
When the assumptions (42) and (43) are introduced it is obtained that:
3pf+4 2
FG, 'F, = M.H + ﬂ “H, (44)
/ %

and thus, according to eqn (28), the isotropic augmented Hooke’s law matrix finally equals:

IZI (SVJrﬁ) (37 +4u) - H, + 27 - Hl. (45)

According to eqn (38) this isotropic, augmented Hooke’s law also may be written :
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_ LN seg Sooseby
H=|2 -H,+1 G - H,, 46
[/+1~1(S+ﬁ/)J A+[ +/:I(S+,3/):l (46)

where the parameters ¢, and b, are :

~02+4
=Ry, “n
o

[=1,2,....N,. (48)

Thus, each separate “damping mechanism”, identified with subscript /, is characterized by
four parameters z,, f§;,, @, and u,.

6.2. General remarks

It should be noted that, with the constitutive equation adopted here, a mixed normal
strain and shear strain damping model is obtained for processes with g, different from zero.
This will be the case even if the corresponding parameter ¢, equals zero. The mixed nature
of the anelastic stress contributions becomes more clear when the anelastic parts of, e.g.,
the stresses &,, and &, corresponding to eqn (46) are written out in detail, respectively, as:

R s Goi +aou) s-4ui
G11)y = (&) FEay F )+ —— 8
( ]l) (S+ﬁ,)<x, ( il ,?) (S—}-,B,)O(/ 11

s 2ur
(612), = —— 27

(AH”B/EQED.

It is obvious from these expressions that the ¢,contribution to the damping may not be
isolated from the p-contribution and studied separately. On the contrary, the p-con-
tribution may be studied separately under pure shear deformation.

It may also be noted, following from eqns (46)—(48), that proportional damping, Ewins
(1986), will be obtained in an isotropic AHL material if the condition:

37+ 2

> (49)
2p;

Qf

is fulfilled for all / =1,2,..., N, at all points x in the material. It follows from eqns (38)
and (46) that the AHL matrix H, in this case, would be proportional to the Hooke’s law
matrix H with a complex, frequency dependent proportionality factor.

The augmented Hooke's law defined by eqns (46)—(48) may be viewed as a gen-
eralization to three dimensions and isotropic AHL materials of the one-dimensional case
with “multiple augmenting fields™ presented by Lesieutre (1992). Multiple processes and
isotropic materials are also discussed by Lesieutre and Bianchini (1993) but a comparison
with their work will not be done here (cf. Section 1).

7. THREE-DIMENSIONAL FINITE ELEMENT IMPLEMENTATION

7.1. Volume element implementation

The isotropic augmented Hooke’s law, defined by eqns (46)—(48), has been
implemented in the ASKA Acoustics code (Goransson 1988) as a complex valued, frequency
dependent 20-node volume element called HXAHL20.

Three different isotropic, single process damping cases may currently be chosen for this
element :
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o o#0 u=0 -¢ -damping
e =0 p#0 - -damping
o p#0 pu#0. -pu-damping

The damping parameters o, . @ and y are constant throughout the element.

7.2. Application to a one-dimensional rod

It may be shown that an analytical solution for a one-dimensional rod with a single
AHL damping mechanism involves a rod with frequency dependent, complex valued
material modulus m(s) :

2

8
m(s) = FEyv+ (757-{—% : g , o ﬂ >0 (50)

where the positive factor 6°/« corresponds to a matrix product F,G;'F, in the general three
dimensional expression for H in eqn (28). The parameters f (the inverse of a relaxation
time constant), & (the strength of coupling between the thermodynamical variable and the
current strain) and « are the same as used by Lesieutre (1989, 1992a) and Ey is the Young’s
modulus.

The complex valued displacement amplitude »(L) at x = L and circular frequency w,
for a rod with complex modulus (50), is given by :

Fx

u(L) = tan(xL), (51)

5

pAw

where « is the complex, frequency dependent wave number defined by :

5

. pwt pw’ (f+iw)
m(iw) ) 3\
Ey [ﬂ-l—lw(l + m)il

In this case the rod is assumed to vibrate longitudinally along the x-axis while fixed at
x = 0. It is excited at the end x = L, in the x-direction, by a time harmonic force with
amplitude F and circular frequency w.

For a case with u, = u; = 0, with displacements in the x,-direction only (the x coor-
dinate is identified with the coordinate x,), and thus also &, = &;; = 0, the isotropic three-
dimensional augmented Hooke’s law, with a single damping process (N, = 1) is reduced
to, see eqns (27) and (46), :

(52)

. s:G¢” Hdop) | stAp’ ],
e [“"2(” P Pl ©9
which is equivalent to:
l::):':]l - EY(I_V) _ B (\//3(/)2+4(P#)2 + s (2‘”)2 (54)
& I+ =2v)  (s+f) a (s+p) «

where v is the Poisson’s ratio.
It then follows, from eqns (50) and (54), that modified values:
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_ EY ( 11— \’)
T (+v(1=2v)

(35)

§=30 (56)

should be substituted for Ey and ¢ in the analytical solution (51), when comparing it to a
finite element simulation of the rod with three-dimensional elements, constraints u, = u; =0
and normal strain damping with damping parameter g = 0.

The end-displacement (51) has been computed for a rod with cross-section 4 = [ x 1
m?, length L = 10 m and force amplitude F = 1 N. The material parameters chosen were
Ey=7.13-10""Nm~% v=0.3and p = 2750 kg m~* and the AHL damping parameters J,
B, a the same as quoted by Lesieutre for aluminium, ie. § = ¢ = 4.77-10° Nm™?, § = 8000
rad s™' and o« = 8000 N m~? (Lesieutre, 1989: p. 48). The solid line in Fig. 1 shows the
analytical end-displacement u(L) computed according to eqns (51) and (52), with Ey and
d substituted by £” and 6’ in eqns (55) and (56). The dashed line in Fig. 1 shows the same
end-displacement calculated for a coupling parameter 6" which is a factor of two larger
than for the solid line, i.e. corresponding to four times larger damping. The peaks, for the
case with the larger damping, are lowered by a factor of four and displaced to higher
frequencies. The frequency shift to higher frequencies is a consequence of the positiveness
of the real part of the anelastic term in the one-dimensional augmented Hooke’s law (50).
As expected, it can also be seen that the amplitude (magnitude) curve approaches the static
elastic value FL/FE’A at zero frequency.

The rod (L = 10 m, 4 = 1 x1 m?) has been simulated by a three-dimensional finite
element model with 20 x 5 x 5 complex AHL-elements (20 elements in the longitudinal x,-
direction and 5 elements in each transverse direction) and constrained transverse dis-
placements u, = u; = 0 in ASKA Acoustics (Section 7). Geometry, material parameters,
AHL damping parameters (%, §, ¢ = ¢ and u = 0) and excitation were chosen as for the
analytical rod. The end-displacement computed with ASKA Acoustics is shown in Fig. 2
(solid line). As can be seen, the agreement between the finite element calculation and the

d= 4.77e6 N/m2
10° L e d=2%4.7766 N/m2 3

Magnitude [m/N}

B 1

1 ' 1 i 1 1
0 100 200 300 400 500 600 700 800 900 1000
Frequency [Hz]

10

Fig. 1. End-displacement (receptance) of a longitudinally vibrating cantilever rod excited in the
axial x-direction by a time harmonic unit force at the free end. Analytical solution with coupling
factor ¢ = 4.7766 * 10° (solid line) and 23 (dashed line).
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analytical solution (solid line in Fig. 1 and circles in Fig. 2) is excellent in this simple
example.

For the rod, vibrating with angular frequency @ and thus having a time harmonic
(sinusoidal) strain field ¢ = du/éx = Re [c¢(x) "], it may be shown [cf. eqns (35)-(37)] that
the (local) mean entropy production 5, per unit mass and unit time at point x and temperature
6, during a time interval / = (0, 7), is given by :

52 2
/’0",7,:;2'[012' ﬁ?(—ﬁ'z%z‘)’ (57)

where [¢[ = [¢(x)] is the (real) strain amplitude at point x. It follows from eqn (57) that the
entropy production is bounded by:

.2 aZ
ICSl 'ﬂ'? when o — o0, (58)

po-3,—

[t should be noted that the parameter 6°/x corresponds to a matrix product F,G; 'F, in the
general three-dimensional case [cf. eqn (36)].

7.3. Three-dimensional test examples

The finite element model used for the simulation of the one-dimensional cantilever
rod, discussed in Section 8, has also been used to simulate an isotropic three-dimensional
cantilever beam in “plane” bending and mixed bending and torsion. The bending vibration
(case B) was excited by a symmetrically and uniformly distributed, time harmonic transverse
force F=1 N in the x,-direction at the free end x = x; = L = 10 m. The mixed bending
and torsion vibration (case BT) was excited by a non-symmetrically applied, uniformly
distributed, time harmonic line force in the x,-direction at the free end x, = L. The force
was consistenily distributed over the free end surface in the bending case and consistently
along the free edge 0 < x, < [, x; = 0 in the mixed bending—torsion case. In both cases, all
displacements were constrained to zero at the fixed end x; = 0. No other constraints were
imposed. For the symmetric bending case (B) two damping cases, normal strain damping

3D ASKA simulation

107 F 00000 analytical rod, eq. (61), (52) E

Magnitude [m/N]

J
0 500 1000 1500
Frequency [Hz]

Fig. 2. End-displacement (receptance) of a longitudinally vibrating cantilever rod excited in the
axial x-direction by a time harmonic unit force at the free end. Comparison between analytical
solution {(circles) and three-dimensional finite element simulation (solid line).
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(1 = 0) and mixed ¢u-damping (¢ # 0. # 0). were studied. For the non-symmetric, mixed
bending-torsion case (BT) mixed ppu-damping was studied.
The elastic parameters and the mass density in the calculations were chosen to be
(representative for aluminium) :
Young'smodulus £y = 7.13-10'""Nm -
Poisson’s ratio P =203
mass density p=2750kgm
The damping parameters, corresponding to the isotropic augmented Hooke’s law matrix
(46) with one process /. were chosen as (cf. Section 8 above) :
0 =47766-10Nm ~ =0
x=8000Nm ~
f=8000rads .

in the normal strain ¢-damping case withour shear damping and as:

0 =47766-10Nm ° u=o
7 =8000Nm -
B = 8000rads
in the mived damping case with hotli normal and shear strain damping.
The results of the three-dimensional ASKA calculations are presented in Figs 3 and 4.

The ASKA computations arc compared to corresponding data (dotted line) for an analytic,
plane Euler beam with the same geometry as the ASKA model and with a complex,

10-5 T T T T T T T T T
ASKA, case B, shear and normal strain damping
N ASKA, case B, without shear damping

......... Plane Analytic Euler Beam {complex Youngs modulus)

Magnitude [m/N]

10' ! 1 it ) L 1 I hd L 1
0 20 40 60 80 100 120 140 160 180 200
Frequency [Hz]

Fig. 3. Transverse. vertical. end-displacement w. (receptance) of cantilever beam. symmetrically

excited (case B) in the transverse (vertical) v.-direction by a time harmonic unit force at the free

end. Mixed shear and normal strain damping (solid line) and normal strain damping only (dashed

line}. Comparison with plane analytical Euler beam (dotted line). Response point P, 0.1 m below
the neutral laver.

SAS 32-13-B
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1 0‘5 T T T T T T T T T
____ ASKA, case BT, shear and normal strain damping
10° L ------- ASKA, case BT, undamped |
......... Plane Analytic Euler Beam {(complex Youngs modulus)
107
3
E10°
@
2
510°
=2
107
10"k
!
1 0’12 L - 1 1

1 1 1. - 1
0 20 40 60 80 100 120 140 160 180 200
Frequency [Hz]

Fig. 4. Transverse. vertical, end-displacement u, (receptance) of cantilever beam, non-symmetrically

excited (case BT) in the transverse (vertical) x,-direction by a time harmonic unit force at the free

end. Undamped (dashed line) and mixed shear and normal strain damping (solid line). Comparison
with plane analytical Euler beam (dotted line). Response point Q at corner.

frequency dependent “Young’s” modulus, defined by eqn (50), with 6 = ¢ and the same «
and f as above.

The receptances, i.e. magnitudes of frequency domain displacements &, divided by the
excitation force at each frequency, presented in Figs 3 and 4, correspond to displacement
responses at the point P (x; = 10 m, v, = 0.4 m, x, = 0.5 m) in the symmetric bending
cases (B) and at the point Q (x; = 10 m, x> = 1.0 m, x; = 0 m) in the mixed bending—
torsion cases (BT). The point P. thus, is situated 0.1 m below the neutral layer of the
cantilever beam while the point Q is situated at a corner of the free end.

As may be seen in Figs 3 and 4, shear deformation of the cross-section contributes to
the response already for frequencies around the second (bending) resonance. This can be
concluded from the difference between the ASKA results and the curve for the plane Euler
beam with its rigidly rotating cross-section (the Kirchhoff hypothesis).

It should also be noted that the magnitude of the third resonance peak in Fig. 3, at
approximately 130 Hz, is lowered by a factor of about 3.8, compared to the case without
shear damping (¢ = 0, dashed line), when the coupling parameter p and thus shear damping
is switched on (coupling parameter u = ¢ > 0).

In Fig. 4 the undamped non-symmetric bending case (BT), i.e. including torsion, is
compared to the corresponding case with mixed damping. The third peak in Fig. 4 cor-
responds to the first torsional vibration mode of the cantilever and, as expected, the
magnitudes of the first, second and third peak in Fig. 3 (mixed damping) are the same as
the magnitudes of the first, second and fourth peak in Fig. 4.

SUMMARY

An isothermal, fully three-dimensional material damping modelling technique has
been proposed. The method is formulated in the frequency domain and material damping
is introduced in the constitutive equations by adding frequency dependent, complex valued
terms to the classical material modulus matrix of Hooke’s generalized law.

The derivations of this augmented Hooke’s law (AHL) are based on linear, irreversible
thermodynamics and the concept of augmenting thermodynamic fields used as hidden
coordinates. A free energy density function, depending explicitly on the current infinitesimal
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strain and the thermodynamic. hidden variables, has been used as the time domain basis of
the augmented Hooke's law. Through a time-domain model of the coupled evolution of
the mechanical displacements and the thermodynamical variables. issues of causality are
avoided completely in the final frequency domain formulation.

An isotropic augmented Hooke’s law with both dilatational and shearing damping has
been implemented and tested using a 20-node finite volume element. A close agreement
between finite element calculations and the corresponding analytically exact results for the
studied rod and beam cases was obtained.
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APPENDIX

The matrix fields (column vectors) u. o and £ are defined as:

w=wlx.t) =[u, ur us)" (A1)
c=0(x.1)=[0,, 6. Gu 6 033 0y] (A2)
E=EX.1)=[c,, £ &y 262 2805 2e5]7, (A3)

where u,. 6, and ¢, are Cartesian vector and tensor components. Thus ¢ and E, respectively, are six-dimensional,

Cartesian matrix representations of the symmetric stress tensor and the symmetric (infinitesimal) strain tensor.
The divergence div(S) of the stress tensor S, in Cartesian matrix notation, may be represented by the three-

dimensional matrix field D"[¢] where D" is the first order. spatial, partial differential operator matrix :

¢ i é 1
— 0 — 0
cx, (A X3
DT=D"[ = 0 i ¢ ¢ 0 (A4)
- X, ax,  0x,y '
‘ ¢ 4 é
boo0 0 = =
i (A CX2  CXy
The matrix operator D' is uniquely defined provided that:
u dir(S) = u'D{o] (A5)
for all (displacement) vector fields u and second order (stress) tensor fields S with Cartesian matrix representations

u and o. respectively.
The strain vector E. also called the engineering strain vector. may be determined from the three displacement
components u, as:

F = D|ul. (A6)

where the first order. spatial, partial differential operator matrix D is identical to the matrix transpose of the
operator matrix D" defined in matrix (A4).



